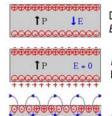
Charge at Ferroelectric Interfaces

D.D. Fong^a, R.-V. Wang^a, F. Jiang^a, P.H. Fuoss^a, S.K. Streiffer^a, J.A. Eastman^a, G.B. Stephenson^a, K. Latifi^b, Carol Thompson^b, A.M. Rappe^c, C.B. Eom^d, and K.R. Elder^e

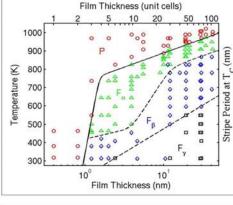

^aMaterials Science Division, Argonne National Laboratory,

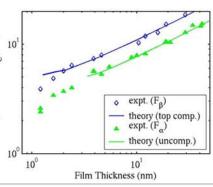
^bDept. of Physics, Northern Illinois Univ., ^cDept. of Chemistry, Univ. of Pennsylvania,

^dDept. of Mat. Sci. & Eng., Univ. of Wisconsin, ^eDept. of Physics, Oakland Univ.

Motivation:

- Compensation of the depolarizing field by charge at interfaces is critical for functioning of standard ferroelectric devices (e.g., nonvolatile memories)
- Compensation is also potential mechanism for coupling ferroelectric behavior with the chemical environment
- Standard models of interfacial charge do not explain recently observed behavior in thin films

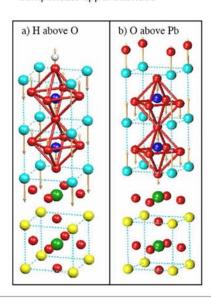

Depolarizing field E opposes P


E compensated by free charge

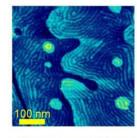
E compensated by stripe domains

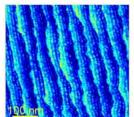
- Challenge: understand the nature of the compensating charge
- · Our approach:
 - Use in situ synchrotron x-ray scattering to observe ferroelectric behavior as a function of thickness, temperature, electrical boundary conditions, and environment
 - Compare x-ray results to both mean field and ab initio theory

Major Accomplishment: Phase Diagram of Equilibrium 180° Stripe Domains

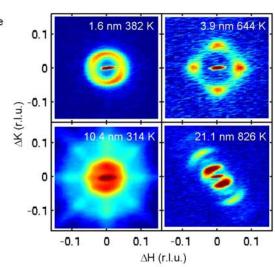


Impact:


- Observe two 180° stripe domain phases (F_ω, F_β) and one monodomain phase (F_ω)
- Equilibrium stripe structure in good agreement with Landau theory (Stephenson & Elder, to be published in J. Appl. Phys.)
- Results suggest intrinsic surface effect may enhance ferroelectric behavior at nanoscale
- Transitions from F_α to F_β and F_β to F_γ reflect sequential compensation of upper and lower interfaces - possible method for controlling ferroelectricity with interfacial chemistry and vice versa


Future Directions:

 Results from preliminary experiments and ab initio theory confirm adsorbed ions can compensate upper interface



- Implications
 - We can switch polarization by changing chemical environment
 - We can change adsorption behavior by poling ferroelectric
 - Adsorbates self-assemble on 180° stripe domains

 In-plane reciprocal space maps indicate strong dependence of stripe domain morphology on film thickness, temperature, cooling rate and crystal miscut

 180° stripe domains interact with steps on PbTiO₃ surface → path to controlling morphology and templated self-assembly

D.D. Fong, A.M. Kolpak, J.A. Eastman, S.K. Streiffer, P.H. Fuoss et al., submitted to Phys. Rev. Lett.

